
Slices: A Scalable Partitioned for Finite Element Meshesl
Hong Q. Ding* Robert D. Ferraro*

Abstract
A pasallcl partitioned for partitioning unstructured finite element meshes on dis-

tributed memory architectures is developed. The, element based partitioned can han-
dle mixtures of different element types. All algoritlnns adopted in the partitioned are
scalable, including a communication template for ullpredictable incoming messages, as
shown in actual timing measurements.

1 Int roduc t i on
Partitioning a finite element mesh among the processors of a parallel supercomputer sets
up the stage for the finite clement analysis problem, The domaiu partition achieves load
balance, preserves proper data locality and reduces communications during the solution of
the problcm. To handle large meshes and to avoid excessive IO, our partitioned partitions
the mesh concurrently on the parallel computer, in contrast, to most misting partitioners
which partition mesh on a sequential computer and then download the partitioned mesh
to a distributed memory computer.

2 Mesh Decomposit ion
The element-based partitioning differs from a grid-based partitioning?, (see [1] and references
therein) in that an element belongs to a processor in its entirety. This implies that the
processor subdomain boundaries go along the edges, instead of cut across the edges in a
grid-based partitioning. To facilitate the elcnnent based calculations, wc further require
that all the nodal points (nodes) of the elemel~t must 1)e on this processor too. Thus a node
on processor subdomtin boundaries is replicated on all processors which share it, although
onc processor oum it during the later solution phase of the linear system which involves
vectors defined on the nodes.

3 Basic Strategy
Associating each clement to its center of mass (ccntroid), the resulting collection of cen-
troids are partitioned via a grid-based partitioned which uses a recursive inertial bisection
algorithm, i.e., in each rccursivc step, the remaining n] csh subdomain is cut into two across
its current longest extension.

Once clcmcnt ccntroids arc partitioned, elements and nodes Inigrat,e from their current
processors to the correct processors. In the process, subdomain boundary nodes arc iden-
tified and replicated. A fast stochastic algorithm is implemcntccl to balance the owned
nodes iteratively to nearly perfect load-balance. With the scalable algorithms implimcntcd,
this part takes about the same processing time as th~ partitioning of centroids,

—-.. . .——

t Work fundc(l by tl,c NASA lIPCC Ess Project.

* Jet]’repulsion l,aboratoryl California Institute of Technology, Pasadena, CA 91109.

1

.

2 DING AND FERRARO

4 Ten~plate f o r Unpred i c tab le Inconling M e s s a g e s ~
A data request protocol frequently occurs in the migration of clcmcnts and nodes. For ex-

ample, the already partitioned ccntroids request that tile element structures migrate to the
processor where the centroid structures are. The requesting processor know whom to send
requests, but the receiving processor does not know how many messages it should expect
and how long each message is? This is a problem of Ullpredictablc incoming messages.

We designed a scalable (no worse than the logarithtn of number of processors) commu-
nication template to resolve this problem as the following; (a) sort data requests on send-
ing processor according to the destinations, (b) call two global communication routines
global_ sum () and global_ maximurno so that each receiving processor knows how many
messages it should expect and the maximum message length; (c) make correct number of
calls to rcccivc the requests with the maximum messa~,c length it expects.

Once data requests are received, each processor send the requested data back to the
requesting processors. Elements and nodes migration arc implemented using this com-
munication template. Minor modifications to the template codes are made to handle the
complications duc to the variable number of nodes each finite element could have and due
to the variable number of processors that a node is shared.

5 Further Refining the Mesh
The elements/nodes distribution resulted from the partitioncr allows one to use a sequen-
tial refiner to refine the local mesh independently, without reference to any information not
locally available.’ An algorithm exists to match the newly created nodes along the subdo-
main boundary, thus connecting local meshes into a global one. A doptivc refinements and
multi-level solution methods to the resulting linear equations could bc easily added.

6 Connection to a Sparse Solvers Package
The sparse linear equations arising from finite element analysis based the partitioned mesh
can be solved by an existing sparse matrix parallel solvers package that wc have written
(see the article by the same authors.) The user dots the physics part ,i.c. calculates matrix
elements of the sparse stiffness matrix, and calls the solvers to cmlstruct the matrix and
solve the linear systcm by either a preconditioned bi-conjugate gradient, method, or a two-
stagc Cholcksy factorization method, or a hybrid method combiniug both.

7 Scaling Characters
Wc measured the scaling behavior on increasing the problem size in proportion” to the
number of processors on Intel Delta. On 4-processol, the partitioncr takes 0.21 scc to
partition the 512 clement problem (each clcmcnt, is S-node hcxi~oll). Thc 4096-element
proldcm on 32-processor takes 0.51 sec. while the 32768-element problem on 25 G-processor
takes 0.93 sec. If wc take 4-processor as the minimum processor size where a partition
algorithm make sense and normalize all timinp, accordingly, a logaritlm~ic scaling is clearly
followed for this scaled size problcm: T(P) /T(4) == 0.8109Z (P/4), for P processors.

References
[1] S. T. Barnard, A. Pothcn, and H. D. Simmi, A Spectral Algorithm JOT Envelope Reduction

oj Sparse Matrices, in Proceedings of Supcrcomputing 93, IEEE Conllmtcr Society Press, Los
Alamitos, CA. 1).493.

